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ABSTRACT Life in water-filled bedrock fissures in the continental deep biosphere is
broadly constrained by energy and nutrient availability. Although these communities
are alive, robust studies comparing active populations and metabolic processes
across deep aquifers are lacking. This study analyzed three oligotrophic Fennoscan-
dian Shield groundwaters, two “modern marine” waters that are replenished with or-
ganic carbon from the Baltic Sea and are likely less than 20 years old (171.3 and
415.4 m below sea level) and an extremely oligotrophic “thoroughly mixed” water
(448.8 m below sea level) of unknown age that is composed of very old saline and
marine waters. Cells were captured either using a sampling device that rapidly fixed
RNA under in situ conditions or by filtering flowing groundwater over an extended
period before fixation. Comparison of metatranscriptomes between the methods
showed statistically similar transcript profiles for the respective water types, and they
were analyzed as biological replicates. Study of the small subunit (SSU) rRNA con-
firmed active populations from all three domains of life, with many potentially novel
unclassified populations present. Statistically supported differences between commu-
nities included heterotrophic sulfate-reducing bacteria in the modern marine water
at 171.3 m below sea level that has a higher organic carbon content than do largely
autotrophic populations in the H2- and CO2-fed thoroughly mixed water. While this
modern marine water had signatures of methanogenesis, syntrophic populations
were predominantly in the thoroughly mixed water. The study provides a first statis-
tical evaluation of differences in the active microbial communities in groundwaters
differentially fed by organic carbon or “geogases.”

IMPORTANCE Despite being separated from the photosynthesis-driven surface by
both distance and time, the deep biosphere is an important driver for the earth’s
carbon and energy cycles. However, due to the difficulties in gaining access and low
cell numbers, robust statistical omics studies have not been carried out, and this
limits the conclusions that can be drawn. This study benchmarks the use of two sep-
arate sampling systems and demonstrates that they provide statistically similar RNA
transcript profiles, importantly validating several previously published studies. The
generated data are analyzed to identify statistically valid differences in active micro-
bial community members and metabolic processes. The results highlight contrasting
taxa and growth strategies in the modern marine waters that are influenced by re-
cent infiltration of Baltic Sea water versus the hydrogen- and carbon dioxide-fed, ex-
tremely oligotrophic, thoroughly mixed water.
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The deep biosphere is the largest biome on earth, where the continental subsurface
alone hosts up to 6 � 1029 cells from all three domains (1). Deep life has been

demonstrated as active by, e.g., “viable/dead” PCR amplification (2), “omics” (3–5), and
video evidence (6). A previous study at the Swedish Nuclear Fuel and Waste Management
Company (SKB)-operated Äspö Hard Rock Laboratory (Äspö HRL) used a specially designed
sampling device to fix cells under in situ conditions to ensure that RNA transcripts were
unaffected by sampling procedures (3). In contrast, other studies used cell capture from
flowing groundwater on filters over several days prior to fixation (see, e.g., reference 4).
However, it is unknown if extended capture times alter the RNA transcript profile.

The extreme oligotrophy in the continental deep biosphere can limit cell numbers
to 101 to 107 cells/ml (1), while Äspö HRL groundwaters contain 105 to 106 cells/ml (7).
Due to the difficulty of obtaining deep biosphere samples and the large water volume
needed to extract sufficient RNA for sequencing, no omics studies have provided
sufficient replicates for valid statistics.

In this study, we combined RNA transcript data from the sampling device (3) and
from cells captured over several days on filter holders to evaluate if the two methods
are comparable (see File S1 in the supplemental material). Additionally, we statistically
analyzed gene transcript counts pertaining to active microbial taxa and their metabolic
processes between groundwaters of various ages and origins.

The studied groundwaters were two modern marine waters (MM-171.3 and MM-
415.2) that are replenished from the Baltic Sea and have a residence time of �20 years
and a “thoroughly mixed” water (TM-448.4) that is composed of different waters of
multiple origins and unknown age (3, 7, 8). Cells were captured, and community RNA
was extracted and sequenced according to File S1. The small subunit (SSU) rRNA
sequences (File S2) were annotated against the SILVA database and normalized as
relative abundances (File S3). The MM-415.2 filter holder metatranscriptomes only had
two replicates and thus cannot be statistically compared to the others. However, this
groundwater was clearly different in both its SSU and protein-coding RNA (pcRNA)
transcripts (Fig. 1) and is discussed in File S4. Nonmetric multidimensional scaling
(NMDS) of SSU rRNA transcript beta diversity suggested that the three water samples
were statistically different in their microbial communities (permutational multivariate
analysis of variance [PERMANOVA] 9,999 permutations, P � 0.0011; Fig. 1). Previous
analysis of the sampling device (SD) TM-448.4-4 sample showed it was different from
the SD TM-448.4-3 sample, as it had likely been recently exposed to an electron donor
(3). Repetition of the NMDS without this outlier altered the significance between the
three groundwaters (P � 0.004). Without TM-448.4-4, the grouping supports the notion
that (i) the two methods give highly similar RNA transcript patterns and, therefore,
sampling with filter holders over several days is valid, and (ii) in the absence of periodic
availability of an electron donor (as for the SD TM-448.4-4 sample [3]), the deep
biosphere communities were stable for a minimum of 2 years.

SSU rRNA-based phylogeny from all analyzed metatranscriptomes showed that a
broad range of phyla from all three domains of life were viable and had protein-
synthesizing potential (3) (Fig. 1). It also reinforced that the deep biosphere contains a
large relative proportion of active candidate phyla from all three domains (e.g., Patesci-
bacteria) along with many unclassified sequences. Statistically valid differences be-
tween the MM-171.3 and TM-448.4 groundwaters included sulfate-reducing bacteria
(SRB) with Desulfobulbaceae in the MM-171.3 groundwater compared to Desulfobacte-
raceae and Desulfurivibrio in the TM-448.4 groundwater (File S5). This confirms that
sulfur compound reduction is prevalent (see, e.g., references 9 and 10) with the
predominantly organoheterotrophic SRB Desulfobulbaceae (11) in the MM-171.3
groundwater compared to autotrophic Desulfurivibrio spp. (12) in the ultraoligotrophic
TM-448.4 water. In addition, increased 16S rRNA gene transcripts in the TM-448.4
groundwater that aligned within the Syntrophus genus demonstrated that syntrophy is
likely to be an important survival strategy in these oligotrophic groundwaters (13).

Analysis of pcRNA transcripts identified 973 unique prokaryote genes (File S6). The
NMDS analysis also showed that the community-level transcription profiles were
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FIG 1 (A and B) Taxonomic annotation of the SSU rRNA (A) and protein-coding RNA (B) sequences showing stacked bars of the taxonomic phyla and
Proteobacteria classes (Betaproteobacteriales shown separately) with a relative abundance of �0.1% for the modern marine (MM-171.3 and MM-415.2) and
thoroughly mixed (TM-448.4) groundwaters. Rare taxa with a relative abundance of �0.1% are given as “other phyla.” (C and D) NMDS Bray-Curtis dissimilarity
(beta diversity) plots based on the SSU rRNA at the lowest taxonomic level that could be assigned to the SILVA database using the Ribosomal Database Project
classifier (C) and a second NMDS without the SD TM-448.3-4 (KA3385A-1) outlier (D). (E and F) NMDS Bray-Curtis plots based on the annotated transcripts (i.e.,
UniProtKB identifiers) with an E value of �10 and TPM of �100 from the full data set (E) and without the SD TM-448.4-4 outlier (F). The sampling methods are
filter holders (FH) and sampling device (SD). Cand, Candidatus.
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statistically different (P � 0.002; Fig. 1), and further removal of the SD TM-448.4-4 outlier
gave a P value of 0.004. Altogether, 410 prokaryotic genes had significant differential
expression between the MM-171.3 and TM-448.4 groundwaters (false-discovery rate
[FDR] � 0.05; E value � 0.001). Transcripts encoding tricarboxylic acid (TCA) cycle (mdh,
fumC, and sucC) and ATP synthase (atpAG) proteins had higher transcript counts in the
MM-171.3 groundwater, while increased TM-448.4 transcripts encoded, e.g., ribosomal
(e.g., rpmB, rpsBK, and rplC) and stress/repair (e.g., dfx, recGN, cspAB, clpPX, dnaK, and
hspC4) proteins. Additionally, a qualitative comparison of the SD TM-448.4-4 outlier (3)
with the other three replicates suggested that this outlier had more transcripts involved
with, e.g., replication and metabolic processes. Overall, most overexpressed transcripts
were seen in the MM-171.3 groundwater, robustly demonstrating that this community
was actively growing while the TM-448.4 populations were in “metabolic standby” (3).

The metabolic process with the greatest number of statistically different MM-171.3
groundwater transcripts was methanogenesis from CO2 (fwdC, mtrACDEH, and
mcrABCG genes) attributed to Methanothermobacter spp. (14) within the Euryarchaeota
(Fig. 2 and File S7 and S8). Sulfur oxidation coupled to nitrate reduction was also
important with increased pcRNA transcripts attributed to Sulfurimonas denitrificans (15)
and Thiobacillus denitrificans (16) in the MM-171.3 and TM-448.4 groundwaters, respec-
tively (File S9). This difference was potentially because S. denitrificans can use, e.g.,
formate, while T. denitrificans is an obligate sulfur compound-oxidizing chemolithoau-
totroph that had statistically increased cbbLS transcripts encoding CO2 fixation via the
Calvin-Benson-Bassham cycle. Consistent with the SSU rRNA data, the pcRNA tran-
scripts had significant differences in the SRB. These included transcripts from 37 genes
attributed to the Desulfobulbaceae that were only present in the MM-171.3 water, while
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FIG 2 (A and B) Average of the significantly different (false-discovery rate [FDR] � 0.05; E value � 0.001) transcripts per million
sequences (TPM) for the modern marine (MM-171.3) and thoroughly mixed (TM-448.4) groundwaters for protein-coding RNA
transcripts assigned to methanogenic taxa (left) and genes attributed to methanogenesis from CO2 (fwdC, mtrACDEH,
mcrABCG; right) (A), as well as protein-coding RNA transcripts assigned to sulfate-reducing bacteria taxa (left) and genes
attributed to sulfate reduction (cytochrome c3, rd2, aprA, dsrA, and dsvAB; right) (B).
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dissimilatory sulfate-reducing genes aprA, dsrA, and dsvAB attributed to Desulfovibrio
spp. were increased in the TM-448.4 groundwater (Fig. 2 and File S8). The importance
of syntrophy was also further demonstrated by pcRNA transcripts in both the MM-171.3
and TM-448.4 waters attributed to Syntrophus aciditrophicus that grows alongside H2

utilizers (17) predominantly present in the TM-448.4 groundwater (File S9). Finally,
earlier observations of cyanobacteria in ancient deep terrestrial groundwaters (18, 19)
were confirmed by increased Synechocystis pcRNA transcripts in the TM-448.4 water,
also demonstrating their viability in these habitats.

This work presents for the first time a statistically robust omics study of deep
subsurface crystalline rock groundwaters with different depths and geochemical char-
acteristics. We conclude that cell capture over several days does not alter RNA transcript
profiles compared to rapid in situ fixation in this extremely oligotrophic environment.
Importantly, this analysis of the two methods validates published studies that have
used capture times prior to RNA fixation over the several days needed to obtain
sufficient biomass for biomolecule extraction from low-cell-density deep groundwaters.
The similarity of the data obtained by the two methods was likely due to the long-term
and stable oligotrophic conditions in the respective groundwaters. These novel find-
ings also provide evidence on how the differences in active communities and metabolic
processes are influenced by organic carbon versus geogas-fed modern marine and
thoroughly mixed groundwaters, respectively. This benchmarking of deep biosphere
metatranscriptome analyses paves the way for future and still-needed exploration of
the living deep biosphere in a statistically sound way.

Data availability. The raw sequence data are available in the NCBI Sequence Read
Archive BioProject numbers PRJNA400688 and PRJNA541524 for the sampling device
and filter holders, respectively.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio
.01470-19.

FILE S1, DOCX file, 0.1 MB.
FILE S2, XLSX file, 0.1 MB.
FILE S3, XLSX file, 0.2 MB.
FILE S4, DOCX file, 0.1 MB.
FILE S5, XLSX file, 0.1 MB.
FILE S6, XLSX file, 0.4 MB.
FILE S7, EPS file, 0.5 MB.
FILE S8, XLSX file, 0.1 MB.
FILE S9, EPS file, 1.9 MB.
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